<cite id="dpv91"><th id="dpv91"><i id="dpv91"></i></th></cite>
<thead id="dpv91"></thead><listing id="dpv91"></listing>
<thead id="dpv91"></thead> <cite id="dpv91"><dl id="dpv91"></dl></cite>
<listing id="dpv91"></listing><var id="dpv91"></var><listing id="dpv91"></listing>
<thead id="dpv91"></thead>
<cite id="dpv91"></cite>
<cite id="dpv91"><video id="dpv91"></video></cite>
<cite id="dpv91"></cite><menuitem id="dpv91"><dl id="dpv91"></dl></menuitem>
您的位置:首页>>业界动态

业界首次! 云天励飞提出用递归网络模型解决视频人脸关键点定位问题

发?#38469;?#38388;:2019-02-21 21:00:18  来源:互联网    采编:即时新闻  背景:

  云天励飞人工智能技术研究多项成果再获国际认可。近日,将于今年4月在日本举行的人工智能领域一大顶级学术会议——人工智能及统计学大会(International Conference on Artificial Intelligence and Statistics,简称AISTATS会议)收录结果揭晓,云天励飞AI技术部王孝宇博士与美国爱荷华大学杨天宝教授领导的团队合作的论文《A Robust Zero-Sum Game Framework for Pool-based Active Learning》入选。该论文提出了一种基于稳健优化的博弈主动学习算法,这有助于节省多种监督学习的标注成本。而在不?#20204;埃?#20113;天励飞另一篇有关采用递归网络模型解决视频人脸关键点定位的论文被计算机视觉顶级学术期刊IJCV收录。

   用递归神经网络 为人脸关键点检测建立时间和空间联系

  云天励飞被IJCV 2018收录的论文名为《RED-Net: A Recurrent Encoder-Decoder Network for Video-based Face Alignment》,团队在业界首次提出采用递归网络模型解决视频人脸关键点定位问题,?#28304;?#26469;减少训练模型的复杂度,并实现对大姿态人脸和部分遮挡关键点的精确定位。此项工作的参与成?#34987;?#21253;括IBM Watson研究院和新泽西州立大学。

1

  Overview of the recurrent encoder-decoder network: (a) encoder-decoder (Section 3.1); (b) spatial recurrent learning (Section 3.2); (c) temporal recurrent learning (Section 3.3); and (d) supervised identity disentangling (Section 3.4). fenc, fdec, fsr n, ft r n, fc l s are potentially nonlinear and multi-layered mappings

  据悉,传统视频人脸关键点检测通常使用级联化的的关键点坐标回归模型对关键点进行由粗到细的定位。在进行视频逐帧人脸关键点定位时,通过使用上一帧人脸的检测框和关键点信息对该帧的定位任务进行更精确的初始化。这类级联回归模型不同级间并不共享?#38382;?#27169;型训练对数据量的要求?#32454;摺?/p>

2

  An unrolled illustration of spatial recurrent learning. The response map is pretty coarse when the initial guess is far away from the ground truth if large pose and expression exist. It eventually gets refined in the successive recurrent steps

  云天励飞团队等在论文中提出了一?#20013;?#30340;递归编码解码器(Recurrent Decoder-Encoder)模型结构来解决视频人脸关键点定位问题。在空间域上,该模型变传统多级级联模型为单一递归模型,大幅度减少模型的复杂度。在时间域上,该模型将编码器生成的嵌入特征中的时变因素和时不变因素进行解耦,并对时变部分用递归网络进行建模学习。

3

  An unrolled illustration of temporal recurrent learning. Cid encodes temporalinvariant factor which subjects to the same identity constraint. Cpe encodes temporalvariant factors which is further modeled in ft R N N

  相比传统视频人脸关键点处理中只使用上一帧结果初始化,这种时域递归网络能够学习和利用更长时间范围内关键点的位置信息和变化规律,实现对大姿态人脸和部分遮挡关键点实现精确定位。

  据介绍,与国际主流方法相比较,在7关键点和68关键点两种模式下,采用递归网络模型定位视频人脸关键点的方法,在Talking Face, Face Moive 和 300VW 三个公开数据集平均误差都显著低于这些主流方法。

递归图

  将模型训练和标注选取结合 提升模型训练效果

  大数据时代来临,人工智能领域面临的一大难题是如?#20301;?#21462;监督学习所需要的大数据?#26434;?#30340;数据标注。对于监督学习来说,并不是每个标注数据对模型训练的帮助程度?#38469;?#31561;同?#27169;?#21363;?#34892;?#25968;据对模型训练帮助更大。而主动学习则是研究如何选取潜在对模型训练更大的未标注数据去给予它们标注,从而达到提升模型训练效果、节省人工标注成本的目的。

  不过,目前已存在的主动学习算法大多或是基于分类模型产生的数据不确定性并利用一些启发式策略进行标注数据选取;或是利用其它理论如信息理论、学习理论定义数据不确定性并产生一些优化式策略进行标注数据选取。

  分开进行标注数据选取和模型训练可能会存在二者步调不统一的情况,从而无法得最优的结果。《A Robust Zero-Sum Game Framework for Pool-based Active Learning》提出的思路并不像之前其它算法那样把模型训练和标注选取两个模块割裂开来,而是利用博弈论将其结合在一起,并引入稳健?#38469;?#36827;行优化,以获得最直接的标注数据选取,以及模型训练效果的提升。

  作者基于博弈论提出的优化目标函数如下:

  其中w代表模型?#38382;?#22914;支持向量机(SVM),深度神经网络(DNN)等;p为单个数据产生的损失的权重(由于是主动学习场景,考虑到存在未标注数据,作者使用的是对于所有可能标注的期望损失

  作者采取在线梯?#35748;?#38477;(online gradient descent)更新模型?#38382;齱:

  作者采取镜像下降(mirror descent)更新数据损失权重p:

  由于加入了稳健?#38469;?#20316;者利用近似?#25104;?#30340;方法矫正p:

  对于方差小的数据,加入稳健?#38469;?#21487;以获得更好的模型泛化效果:

  当数据方差数量级小于1/n时,泛化错误将为O(1/n)而不是通常的O(1/sqrt(n)).

  此外,作者运用了在线算法的分析思?#20998;?#26126;了算法收敛的遗憾界限(regret bound):

  最后,作者进行了对于SVM和DNN的主动学习实验,并采用了一些知名机器学习算法效果对比数据集(benchmark datasets),效果如下 (横轴为标注数据数目,纵轴为测试准确度,RZSG为论文提出的算法):

评分1
评分3

  MNIST

评分4

  CIFAR 10

评分5




关注ITBear科技资讯公众号(itbear365 ),每天推送你?#34892;?#36259;的科技内容。

特别提醒:本网内容转载?#20113;?#20182;媒体,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或?#20449;担?#24182;请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任?#25991;?#23481;侵?#25913;?#30340;权益,请及时联系我们,本站将会在24小时内处理完毕。


返回网站首页 本文来源:互联网

本文评论
2019,折叠手机元年
近年来,由于手机使用逻辑并没有太大的改变,因此消费者更加倾向于直板手机,不过各?#39029;?#21830;在直板手...
日期:02-22
沃达丰首次将5G手机接入网络 比4G快10倍
2019是属于5G?#27169;?#20020;时牌照的发放,各大运营商各推政策争夺用户,抢?#38469;?#22330;。各大终端产商打时间战,...
日期:02-22
高盛评三星折叠机?#25022;云?#26524;iPhone带来挑战
高盛今日向投资者表示,三星新款可折叠屏幕手机将?#20113;?#26524;iPhone带来挑?#20581;?/div>
日期:02-22
外媒:苹果最早明年?#29260;?#33521;特尔处理器,转用自家ARM芯片
此前外界普遍预计,苹果最早将在2020年?#29260;?#33521;特尔处理器,转而采用?#32422;?#30340;ARM芯片。Axios报道今日称...
日期:02-22
百度2018Q4财报出炉 自动驾驶商业化创收了吗?Apollo用稳定营收额告诉你
?#26412;?#26102;间2月22日(美国东部时间2月21日),百度公布了2018年第四季度及全年未经审?#39057;?#36130;务报告。数据...
日期:02-22
业界首次! 云天励飞提出用递归网络模型解决视频人脸关键点定位问题
云天励飞人工智能技术研究多项成果再获国际认可。近日,将于今年4月在日本举行的人工智能领域一大顶...
日期:02-21
苏宁易购&PP体育联名会员,免费看240场中超比赛
2月21日,苏宁易购与PP体育在南京举办“中超2019赛季战略发布暨苏宁易购&PP体育中超联名会...
日期:02-21
华为FusionPlant:融合ICT技术   构建实体经济新动能
2月21日,2019工业互联网峰会在?#26412;?#20030;行。大会汇聚了政府、企业、研究机构等各界代表,共同聚焦如何...
日期:02-21
Gartner?#26680;?#23478;中国大陆企业跻身2018年全球前十大半导体客户
2月21日,Gartner公布了最新全球半导体设计总体?#34892;?#24066;场前十大企业排名,排名显示,2018年三星电子...
日期:02-21
AirPods的新对手:三星发布新款无线耳机Galaxy Buds
除了新的 Galaxy S10 系列和可折叠智能手机 Galaxy Fold,三星 2019 年新品发布会还推出了一款新的...
日期:02-21
既能直也能弯 努比亚可量产柔?#20113;?#25163;机要来了
近一?#38382;?#38388;以来,努比亚官方?#20013;?#23545;新品做预?#21462;?#20027;角就是即将在MWC19上发布的努比?#21069;?#23572;法,这将是努...
日期:02-21
三星S10系列发布亮点颇多 只是价格把我劝退了
?#26412;?#26102;间2月21日凌晨,三星在美国正式发布了三星S10系列手机。这一次三星带来了五款手机产品,分别...
日期:02-21
东易日盛集团三喜临门庆典:科技加持,设计未来!
2019年2月19日是正月十五元宵佳节,更?#23884;?#26131;日三喜临门的大好日子!第一喜:庆上市五周年、第二喜:...
日期:02-21
DaDa、VIPKID、巧口英语  哪个更适合孩子学英语
2018年,国内K12在线英语教育机构?#32773;?#33521;语全面迎来品牌焕新:包括全新Logo及宣传海报在内,各?#20013;略?..
日期:02-21
雷军走出舒适区 小?#36164;?#26426;能否借此重回巅峰?
经过7天连续剧般的预热,小米9发布会终于在2月20日画下句号。
日期:02-21
新车企“爆款”不再单一 游侠汽车的产品自信
新造车企发展初期的产品策略大多?#28304;?#36896;爆款为主,但随着技术、产业和市场的不断完善,丰富产品线的需...
日期:02-21
LG发布三款中端机型:后置三摄+水滴屏 ?#28010;?#38450;尘
2月20日,据外媒报道,LG今天发布了三款全新的手机-LG Q60、LG K50与LG K40。
日期:02-21
 
领航时时彩重庆版
<cite id="dpv91"><th id="dpv91"><i id="dpv91"></i></th></cite>
<thead id="dpv91"></thead><listing id="dpv91"></listing>
<thead id="dpv91"></thead> <cite id="dpv91"><dl id="dpv91"></dl></cite>
<listing id="dpv91"></listing><var id="dpv91"></var><listing id="dpv91"></listing>
<thead id="dpv91"></thead>
<cite id="dpv91"></cite>
<cite id="dpv91"><video id="dpv91"></video></cite>
<cite id="dpv91"></cite><menuitem id="dpv91"><dl id="dpv91"></dl></menuitem>
<cite id="dpv91"><th id="dpv91"><i id="dpv91"></i></th></cite>
<thead id="dpv91"></thead><listing id="dpv91"></listing>
<thead id="dpv91"></thead> <cite id="dpv91"><dl id="dpv91"></dl></cite>
<listing id="dpv91"></listing><var id="dpv91"></var><listing id="dpv91"></listing>
<thead id="dpv91"></thead>
<cite id="dpv91"></cite>
<cite id="dpv91"><video id="dpv91"></video></cite>
<cite id="dpv91"></cite><menuitem id="dpv91"><dl id="dpv91"></dl></menuitem>